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Wide use is now made of the method of measuring the density of a rarefied gas from 
the intensity of radiation excited in the medium investigated by an electron beam [i, 2]. 
In this method, for a sufficiently narrow electron beam at the point x located on the beam 
axis, the density p(x) is related to the intensity of excited radiation I(x) by 
the simple equation I(x) = Ai(x)p(x) (i(x) is the beam current at the point x, 
and A is a constant). As the gas density increases there is substantial attenua- 
tion of the electron beam intensity, and the current i(x) decreases with increase 
of x. Under these conditions the above relation cannot be used directly, since the 
value of i(x) at points located in the volume investigated is unknown. References [3, 4] 
proposed methods of determining p(x) from I(x) under conditions of electron beam attenuation; 
in [3] it was posed to measure the density only at points x lying in the flow symmetry plane, 
and in [4] to determine the density profile p(x) from the profile of radiative intensity at 
any point x ~ [x0, x k] located along the electron beam (x 0 is the entry point to the test 
region, and x k is the exit point). In [4] the problem of determining p(x) was reduced to 
seeking a solution of an integral equation, and an iterative algorithm was suggested for the 
solution. In contrast with [4] the present paper considers an approach that allows an 
exact solution of the equation presented in [4], and a detailed analysis of the errors in 
recovering p(x) from I(x), as a function of the level of errors of the directly measured 
quantities�9 

i. As was done in [3, 4] we shall use the widely applied model of exponential attenua- 
tion of the electron beam current with increase of x. Here at a point x lying on the beam axis 
we have the relation 

i(x) := i~ i P(xJdxl] ' o  

where i 0 is the current at the entrance to the test volume, i.e., at the point x 0 (for con- 
venience we shall take x 0 = 0 as the origin of the variable x); and U is the cross section 
for current attenuation�9 

In accordance with [4] the profile I(x) and the profile O(X) are related by the equation 
[" ~ -1 

aI)(J')(;XD/--~t i;~)(;E1)(~,/'l] ~=1 (J:) (a -: A~O). (i.i) 
1 ~ J 

We introduce the notation 

equivalent to the relation 

(,,) ~= !' t ) (q )d . , . ,  (1.2) 

I,(~ dz(x);dx 

From Eq. (i.i), using Eqs. (1.2) and (1.3), we obtain the differential equation 

d:(x) 
a e x p  l .... l'z(.Ol%vz-: [(.*:). 

Solving this by the method of separation of variables, we have 
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z(x) x 

0 0 

(1.5) 

After evaluating the integral on the left of Eq. (1.5) and carrying out a transformation, we 
find a solution of Eq. (1.4) in the form 

[ 5 ] z(x) - ~tt In I - T I "  "I (x t )  d,r~ . ( 1 . 6 )  
0 

Taking into account that z(x) is the integral in Eq. (1.2) of p(x), as a result of differ- 
entiating Eq. (1.6) we obtain the final expression for the gas density 

p (x) :=  ,l (z) , 

--- ~ .,i Z ('5) d. ,  ( i .  7 ) 
0 

where we have used the fact that ~ jl(x,)dx, =~ I (x).  
0 

In the special case of negligibly small decrease of the electron beam current (p : 0), 
Eq. (1.7) reduces to the relation l(x) = ag(x) used in [I, 2]. 

In order to calculate p(x) from Eq. (1.7) (for values of a and p known as a result of 
calibration measurements) the single laborious operation is to find the integral of the pro- 
file I(x). The structure of Eq. (1.7) is such that when one uses an integrating element in 
the measuring system [5] one can automate the process of determining the density with compu- 
tation of p(x) in the real time. 

2. The quantities a, p and I(x) appearing in Eq. (1.7) are usually measured with errors 
in the actual conditions of the experiment, i.e., instead of them we have, respectively, 

a = a -f- e~,, ~, -== F~ + e, .  l ( z )  = I ( x )  -~- e l (x ) .  ( 2 .  l )  

Here e a, ~p are random deviations for the exact values; ~l(X) are random (noise) distortions 

of the function l(x). Substituting Eq. (2.1) into Eq. (1.7), we obtain instead of p(x) the 
distorted density profile 

/ (x) + ~i (x) ( 2 2 ) 
7;= ~, (-~) + ~ (~) = g (x) + A (x) ' 

x 

g (a)  =:  a - tt j I (z~) d,~:~, 
0 

A (x) = ~'.~ - ~t J" ~l (xt) dxl --  et~ [I (xj) -I" e• (xl) ] dx 1. 
0 0 

Expanding the right side of Eq. (2.2) in a power series in the parameter ~(x) = A(x)/g(x), 
we find 

P ('") + ~"' (") 7 ~z7 - "" 
( 2 . 3 )  

In practice we are interested in the case where the perturbing random factors Ea, sp and 
Ei(x) are quite small. In this situation in the expansion (2.3) we can limit attention to 
terms that are linear in the measurement errors Ca, ep and sI(X). In this limited framework 
the error in determining p(x) can be represented in the form 

co(x)== ~ e~ (x ) - - f ( . r )  v , - - H .  ( x j ) d . q - - e ~  I (x l )  da" l . ( 2 . 4 )  
0 0 
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We can calculate the variance o~(x) of the error ep(X). If we assume that the noise in 
measuring el(X) is uncorrelated ("white noise"), then the variance of the integral 

v 09 - j .~, 0',) d,q 
N 

can be written, in accordance with [6], in the form 

. ,, ( 2  5 )  o~ (.0 2.~'~, 

where o 12 is the variance of the random function El(X) at each point of measurement: (it is 

assumed that the measurement noise does not depend on x). 

Since the measurement of a, ~ and l(x) is usually conducted independently, the random 
characteristics e a, e~ and el(X) can be considered as statistically independent. Thus, by 
calculating ~2(x) as the variance of the sum of independent random quantities [7] and 

P 
taking account of Eq. (2.5), we have 

o~, (x) : :  o j  [1 i 2,i '1~ (x) [,t'J + I ~ (x) o~,-i % 

where o~ is the variance of the random function a; c 2 is the variance of the random func- 

tion ~. 

3. Above we presented formulas for computing p(x) using Eq. (1.7) and the variance 
of the error o2(x) from Eq. (2.6), in which we postulated a continuous method of recording 

P 
the signal l(x). But if, because of various technical difficulties, l(x) can be recorded 
only at a finite set of points {Xn} , n = i .... , N, then, instead of the integral in the 
denominator of Eq. (1.7), we must use the quadrature formula [8] 

i (x,), ' I  (xO dxl ~, ,~ 
0 i=l  

where x i and C ( ~ )  are, respectively, the nodes and coefficients of the quadrature sum, and 
i 

n < N. It can be shown that in this case the variance a;(Xn) at the point x n is determined 
by-the expression 

o~2 (x.) -- g~t(zn) o~ +pzi2(x, ,)  ~=, (C~")) 2 +I2(xn)  ~-1 -4  C~"~ (x~) ., ( 3 . l )  

and here 

(3 .2)  

It should be noted that replacement of the integral in Eq. (1.7) by the quadrature sum 
leads to an additional systematic error due to the discrete arithmetic. But if to calculate 
this distortion we use the expression 

oc 

,f" / (xl) d z  l - -  d,~ ~ C~ 70I (xi) 
i=:1 

x 

,! I (x l) d~ 1 
0 

then replacement of the integral in Eq. (1.7) by the quadrature sum is equivalent to using 
~i = ~/(i - $(x)) instead of ~. Thus, we can allow for the error of using discrete arithme- 
tic by replacing the factor ~ by the factor ~i in Eqs. (3.1) and (3.2) (if $(x) is known). 
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4. 
calculations for model functions. As original functions p(x) we chose: 

a parabolic profile 
p(x) = ~x( l  - x); 

a profile of shock wave type [9] 

t, (x) .... @ (P, + P~) + - r  (P~ - P~) th 

To illustrate the possibilities of recovering p(x) for the l(x) profile we made test 

( 4 ~  

(4.2) 

with Pz = 0.2, P2 = i, A = i. 
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For certain given values of the parameters a and p, in accordance with Eq. (i.i) we 
calculated the intensity profile I(x), which was then summed with the computer-generated 
pseudorandom function ei(x), having variance ol. From the function ~(x) thus obtained 
the density profile p(x) was recovered. The results of this recovery are shown in Figs. 1 
and 2 (for models (4.1) and (4.2), respectively), where the solid lines denote the exact 
function p(x), and the broken lines denote the function I(x) with p = i, 2 and 3 (lines 1-3 
and the values of p are given in reduced units). By comparing the solid and broken lines 
we can see that in the model calculations we considered cases where the electron beam attenua- 
tion factor is appreciable. In the calculations we took a = i. 

The broken lines in Figs. 1 and 2 denote the recovered functions p(x) also for p = i, 
2 and 3. The noise o I was taken to be 1% of the maximum value of I(x). 

Figures 3-5 show graphs of the dependence of the recovery error Op (for p = i), due 
to different levels of noise, error in the coefficients a and p (the solid lines are the 
model (4.1), and the broken lines are the model (4.2)). The lines 1-5 on Fig. 3 refer to 
o I = 15; i0; 5; 3; and 1% of the max I(x), on Fig. 4 the lines 1-4 are for a D = 20; 15; and 

X 

5%, and on Fig. 5 the lines 1-4 are for o a = 20; 15; i0; and 5%. The values of o I for the 
graphs of Figs. 4 and 5 were taken as 1%. 

Analysis of the results of the model calculations shows that this method of recovering 
p(x) has quite high stability towards errors in the original data. 
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